Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Animals (Basel) ; 13(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508050

RESUMO

Fish tissue samples from 203 adult individuals were collected in the main ports and markets of the Pacific coast of Panama. Molecular identification based on a cytochrome oxidase I gene segment of all species was verified by GENBANK reference sequences. A total of 34 species from 14 families (Ariidae, Caranjidae, Centropomidae, Gerreidae, Haemulidae, Lobotidae, Lutjanidae, Malacanthidae, Mugilidae, Scianidae, Scombridae, Serranidae, Sphyraenidae, Stromateidae) were identified at the species level from 164 sequences. Additionally, three Caribbean species were molecularly identified among the analyzed samples (Mycteroperca xenarcha, Paralonchurus brasilensis and Lobotes surinamensis). Species diversity was slightly higher in the Gulf of Panama than in the Gulf of Chiriquí. For species with five or more individual sequences, genetic diversity and genetic connectivity parameters such as total number of haplotypes (H), haplotype diversity (Hd), and nucleotide diversity (π) were calculated. Overall, pelagic-migratory species showed higher values of genetic diversity than coastal and estuarine species with some exceptions. Connectivity between Gulf areas was compared using values of genetic distances and genetic differentiation (Fst). The high level of connectivity observed between the Gulf of Chiriqui and the Gulf of Montijo indicates the existence of a single stock in that area for the following species: Scomberomorus sierra, Caranx caninus and Lutjanus guttatus. The demographic history of the most common species was examined using Tajima's D values, suggesting population expansion for two snapper species, L. peru and L. argentiventris, having significant and higher values. Another important contribution from this research was the production of primers and dual-labeled probes for environmental DNA detection using qPCR for the five most abundant species (spotted rose snapper, yellow snapper, green jack, Pacific crevalle jack and the Pacific sierra fish). These markers represent a new set of tools for environmental DNA (eDNA) detection and molecular traceability of three commercially important fish species along the supply chain including landing sites and markets of the main fishery areas.

2.
Braz. j. infect. dis ; 25(1): 101038, jan., 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249296

RESUMO

ABSTRACT Background: Pseudomonas aeruginosa is an important causative agent of nosocomial infections. As pathogen, P. aeruginosa is of increasing clinical importance due to its ability to develop high-level multidrug resistance (MDR). Methods: The aim of the present study was to better understand the intrinsic virulence of circulating strains of Pseudomonas aeruginosa, by surveying and characterizing the antibiotic resistance profiles and prevalence of virulence factors in 51 clinical isolates of P. aeruginosa obtained from children admitted to Hospital del Niño-Panamá during the period of October 2016 until March 2017. Antimicrobial susceptibilities were assessed by determining the minimum inhibitory concentration for 12 antibiotics against P. aeruginosa clinical isolates using the VITEK system (https://www.biomerieux.com). Additionally, all isolates were examined by Polymerase Chain Reaction (PCR) for the presence of components of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes and betalactamases resistance genes (ESBL) using gene-specific primers. Results: A total of 51 pyoverdine producing clinical isolates were analyzed, all of which expressed resistance genes such as genes of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes (fpvA). Out of 51 MDR isolates, 22 were ESBL producers. The most common ESBL gene was blaTEM expressed by 43% of the isolates. The isolates tested in this study showed increased resistance to antibiotics in the following categories: (i) penicillins (ampicillin (69%), piperacillin (22%); (ii) pyrimethamines (trimethoprim, 65%); (iii) nitrofurans (nitrofurantoin, 63%), and (iv) third-generation cephalosporin cefotaxime (53%). These results underscore a high prevalence of MDR amongst clinical isolates from Panama. Conclusions: The present study indicates that prevalence of BlaTEM-carrying strains is increasing with subsequent multidrug resistance in Panamá and as well reported worldwide. The virulent factors identified in this study provide valuable information regarding the prevalence of resistance genes and their potential impact on treatments that exploit the unique physiology of the pathogen. To prevent further spread of MDR, the proportions of resistant strains of Pseudomonas aeruginosa should be constantly evaluated on healthcare institutions of Panamá. More importantly, this information can be used to better understand the evolution and dissemination of strains hoping to prevent the development of resistance in Pseudomonas aeruginosa. Future studies quantifying the expression of these virulent genes will emphasize on the acquisition of multidrug resistance.


Assuntos
Humanos , Criança , Infecções por Pseudomonas/epidemiologia , Infecção Hospitalar , Panamá , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/farmacologia , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/farmacologia , Testes de Sensibilidade Microbiana , Prevalência , Farmacorresistência Bacteriana Múltipla/genética , Hospitais , Antibacterianos/farmacologia
3.
Braz J Infect Dis ; 25(1): 101038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33285136

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an important causative agent of nosocomial infections. As pathogen, P. aeruginosa is of increasing clinical importance due to its ability to develop high-level multidrug resistance (MDR). METHODS: The aim of the present study was to better understand the intrinsic virulence of circulating strains of Pseudomonas aeruginosa, by surveying and characterizing the antibiotic resistance profiles and prevalence of virulence factors in 51 clinical isolates of P. aeruginosa obtained from children admitted to Hospital del Niño-Panamá during the period of October 2016 until March 2017. Antimicrobial susceptibilities were assessed by determining the minimum inhibitory concentration for 12 antibiotics against P. aeruginosa clinical isolates using the VITEK system (https://www.biomerieux.com). Additionally, all isolates were examined by Polymerase Chain Reaction (PCR) for the presence of components of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes and betalactamases resistance genes (ESBL) using gene-specific primers. RESULTS: A total of 51 pyoverdine producing clinical isolates were analyzed, all of which expressed resistance genes such as genes of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes (fpvA). Out of 51 MDR isolates, 22 were ESBL producers. The most common ESBL gene was blaTEM expressed by 43% of the isolates. The isolates tested in this study showed increased resistance to antibiotics in the following categories: (i) penicillins (ampicillin (69%), piperacillin (22%); (ii) pyrimethamines (trimethoprim, 65%); (iii) nitrofurans (nitrofurantoin, 63%), and (iv) third-generation cephalosporin cefotaxime (53%). These results underscore a high prevalence of MDR amongst clinical isolates from Panama. CONCLUSIONS: The present study indicates that prevalence of BlaTEM-carrying strains is increasing with subsequent multidrug resistance in Panamá and as well reported worldwide. The virulent factors identified in this study provide valuable information regarding the prevalence of resistance genes and their potential impact on treatments that exploit the unique physiology of the pathogen. To prevent further spread of MDR, the proportions of resistant strains of Pseudomonas aeruginosa should be constantly evaluated on healthcare institutions of Panamá. More importantly, this information can be used to better understand the evolution and dissemination of strains hoping to prevent the development of resistance in Pseudomonas aeruginosa. Future studies quantifying the expression of these virulent genes will emphasize on the acquisition of multidrug resistance.


Assuntos
Infecção Hospitalar , Infecções por Pseudomonas , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/farmacologia , Criança , Farmacorresistência Bacteriana Múltipla/genética , Hospitais , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/farmacologia , Testes de Sensibilidade Microbiana , Panamá , Prevalência , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...